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3,4,9-Trimethoxyphenalenone (6). The reaction w a ~  carried 
out under an argon atmosphere, and all of the glassware was flame 
dried. 3-Hydroxy-4,9-dimethoxyphenalenone (3) (1.0 g, 0.0039 
mol) was dissolved in acetone (dried over alumina). Anhydrous 
potassium carbonate (2.0 g, 0.01 mol) was added ta the h k  while 
the solution was mechanically stirred. After 10 min, methyl 
p-toluenesulfonate (1.5 mL, 0.01 mol) was slowly added to the 
flask and the reaction mixture was taken to reflux. After 16 h 
the solution was filtered and the filtrate was evaporated down 
on a rotary evaporator to give a viscous pale yellow oil. The 
compound was purified by high-pressure liquid chromatography 
on a silica gel column (using methanol-methylenechoride (595) 
as eluant) to give 3,4,%trimethoxyphenalenone (0.43 g, 41% yield) 
as a yellow solid mp 166.0-166.2 "C); IR 9 Hz, CsI) 2940 (w), 
2840 (w), 1650 (vs), 1578 (s), 1540 (m), 1508 (m), 1455 (m), 1392 
(m), 1366 (w), 1306 (m), 1266 (s), 1220 (s), 1170 (s), 1090 (w), 1038 
(s),1000 (w), 958 (w), 835 (m), 804 (w), 785 (w), 662 (w), 510 (w), 
430 (w); UV [A- nm (e) (hexane)] 413 (3300, sh), 392 (6000, sh), 
362 (14400), 323 (5500, sh), 250 (22200); 'H NMR (CDCl,, Me4Si) 
6 3.96 (8, 3 H), 4.08 (8 ,  3 H), 4.15 (8 ,  3 H), 6.26 (8, 1 H), two AB 

Calcd for C&& C, 71.10; H, 5.22. Found C, 70.88; H, 5.50. 
patterns bA 7.20,bA 7.28,6~ 7.91,6B 7.98 (JAB = 9 Hz, 4 H). Anal. 

1,3,4,9-Tetramethoxyphenalenylium Tetrafluoroborate 
(7+,BF4-). Trimethoxyphenalenone (6) (0.135 g, 0.5 mmol) was 
dissolved in 5 mL of dry 1,2-dichloroethane under nitrogen, and 
trimethyloxonium tetrafluoroborate (0.1 g, 0.7 mmol) was added 
with stirring. After 3 h the mixture was filtered and the precipitate 
isolated (0.135 g, 72%). Recrsytallization from acetonitrile gave 
yellow needles: mp >300 "C; IR (cm-l, CsI) 3450 (w,br), 1615 (s), 
1600 (s, sh), 1561 (s), 1500 (m), 1488 (m, sh), 1465 (w), 1393 (w), 
1354 (w), 1285 (vs), 1247 (m), 1230 (m), 1182 (m), 1055 (s), 1020 
(vs), 950 (w), 901 (w), 835 (m), 655 (vw), 515 (vw); UV [A, nm 
(e) (acetonitrile)] 423 (24100), 399 (19900) 374 (19300), 267 (11O00, 
sh), 236 (22 OOO), 220 (23 900); 'H NMR (CD3CN, Me4Si) 6 4.32 
(s, 6 H), 4.38 (8,  6 H), 7.05 (8, 1 H), AB pattern &A 7.67, &B 8.67 
(JAB = 9 Hz, 4 H). Anal. Calcd for C17H1704BF4: C, 54.87; H, 
4.60, B, 2.91; F, 20.41. Found C, 54.77; H, 4.64, B, 3.01; F, 20.11. 
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N . Communications 
Total Synthesis of Tirandamycin. A Short, Efficient 
Synthesis of the Ireland Alcohol 
Summary: Alcohol 3, comprising the bicyclic portion of 
the antibiotic tirandamycin, has been synthesized in seven 
steps from 2,3-dimethylfuran and aldehyde 5. The key 
transformation in this scheme is conversion of furan al- 
cohol 4 into pyranone l l .  

Sir: Tirandamycin (1)'~~ is a member of the 3-dienoyl- 
tetramic acid family of antibiotics. Several groups have 

h 2: R = O  
I 

" 0 4  

been involved in the development of methodology for the 
total synthesis of this m o l e ~ u l e . ~ ~  These efforts have 
recently culminated in the synthesis of (+)-tirandamycic 
acid (2), a degradation product of tirandamycin, by Ireland 
and his co-workers, beginning with ~ - g l u c o s e . ~  In this 
communication, we report a short, efficient synthesis of 
alcohol 3 (the Ireland alcohol) in racemic form. 

Alcohol 3 was prepared previously in the Ireland syn- 
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a t-BuMe,SiCI, imidazole, DMF, room temperature; ( b )  
O,, CH,CI,, -20 "C; HOAc, Zn, room temperature. 
thesis of tirandamycin acid and was chosen as a key in- 
termediate in our strategy for the synthesis of tiran- 
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( a )  t-BuLi, ether, 0 "C; (b)  5, ether, -78 "C; (c)  
BaMnO,, CH,Cl,, r o o m  temperature;  (d) Zn(BH,),, ether,  
room temperature;  ( e )  mCPBA, CH,Cl,, 0 "C; (f) 5% 
aqueous HF, CH,CN, room temperature;  ( 9 )  Me,SiCl, 
NaI, CH,CN, r o o m  temperature.  

damycin (Scheme I). In this strategy, the four contiguous 
asymmetric centers, C-5, C-4, C-3, and (2-10, in 3 are es- 
tablished early in the sequence by utilizing aldehyde 5' 
The key transformation in this strategy is the oxidation 
of furan-alcohol 4 to produce the bicyclic ring system 
found in 3. We6 and otherseJa had earlier shown that 
oxidation of furan-alcohols could be used to prepare py- 
ranones similar to 3. 

Synthesis of racemic 5 is outlined in Scheme II. Readily 
available homoallylic alcohol 7" was converted to the 
TBDMS ether under standard  condition^'^ and oxidized 
with ozone to give the unstable aldehyde 5 in 70% overall 
yield. 

followed by ad- 
dition to aldehyde 5 gave a N 1:l mixture of diastereomeric 

Metalation of 2,3-dimethylfuran 
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alcohols 4 and 9 (Scheme I1I).l6 The alcohols were sep- 
arated by column chromatography, and 9 was oxidized to 
ketone 10 with BaMnOl (95%)." Reduction of 10 with 
ZII(BH~)~'~ resulted in selective formation of diastereomer 
4 by "chelation-controlled" reduction.lg 

With 4 in hand, the critical step of the strategy could 
be investigated (vide supra). Oxidation of 4 with m- 
chloroperbenzoic acid20 followed by cleavage of the silyl 
ether with HF in acetonitrile gave the bicyclic enone 11 
in 90% yield.21 Removal of the benzyl ether protecting 
group with MeSi122 gave 3 (50%), which was identical by 
IR and 'H NMR with the Ireland alcohol. Alcohol 3 has 
been converted into tirandamycic acid (2) in four addi- 
tional steps, and thus this synthesis constitutes a formal 
total synthesis of 2. 

The sequence outlined above for the synthesis of 3 is 
short (seven steps), stereospecific, and allows us to rapidly 
assemble the complex functionality of the bicyclic system 
of tirandamycin. We are currently attempting to employ 
this methodology for the total synthesis of tirandamycin 
and related antibiotics. 
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Catalysis of Nitration of Naphthalene by Lower 
Oxides of Nitrogen' 
Summary: Nitrous acid catalyzed nitration of naphthalene 
does not proceed through nitrosation, and the mechanism 
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